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AERONAUTIC SYMBOLS

1. FUNDAMENTAL AND DERIVED UNITS

.... i........L Metric i English

i ........

Sym o .......... i bb;oUnit bbrevia- / A ;ia'
tion i Unit '

: _ I tion t

i:, - ..
" i_

Length ..... x -i 1 i meter_i_ _ ...... -_Time_ ....... I t second,='_-"---'-- ..... "-i m i!!foot (or m!ite), ..... i ft. (or mi.) i

_ Forcei_=__=__ 1 F weight of 1-£if/gra-m!_-__- i s _ second (or hour) ......... i see, (or hr.) _ikg :i weight of lpound_____i lb.

i Po_'er .... i p horsepower (metrie) :._ ,_ i ___.__ : i horsepower, .......... i hp.

I Speed ....... ii V meters per second__ .... -Jl m.p:s. _: feet per:seeond_i!:_:._:l f.p.s:

2. GENERAL SYMBOLS

Weight= mg v, Kinematic viscosity
Standard acceleration of gravity--9.80665 p, Density (mass per unit volume)

m/sZor 32.I740 ft./see. 2 Standard density ot dry air, 0.124:97 kg-m'4-s 2 at
W 5 C. and 760 mm, or 0.00_o78 lb,-ft, se .

Mass=-- Specific weight of ',standard" _, 1.2255 kg/m 3 or
g 2 "

Moment of inertia=ink '. (Indicate axis of 0.07651 lb:/cu, ft.

radiusof _ration k by proper subscript.)
Coefficient 0f viscosity :

3. AERODYNAMIC SYMBOLS

Area

Area of wing

Gap

:SpaIl

Chord

Aspectratio

True air speed

Dynamic pressure= _:pV

Lift, L
absolute coefficient I:C_=

DrN, " D
absolute coefficient CD=_S Cp,

drag, absolute coefficient CD0"-_ a,ProNe
..&

Dt e,
Induced drag, absolute coefficient CD,=aS 0_0_

Parasite drag, absolute coefficient CD_,=_D_' a,_,a*'

C
Oross-wind force, absolute coetfieient Cc=:-_ %

:iw, •Angle of setlting of:wings (relatlve:tothrUst

line)

i_, Angle of ....sta.bilizer setting (relative to thrust

_ne)
Q, Resultant moment

_, Resulta:nt :angular velocity

p _, Reynolds N umber, where 1 is a Iinear dimension
(e_.,: for a model aiffoiI 3 in &ord, 100

" _' °_'_ .... ' " ' ......' " o ...... "_
m.p:h,; normal press_e !at 15 C., .,the cor-
responding number is 234,000; or for a model

of 10:cm chord, 40 m.p.s., the corresponding

number is 274,000)

Center-of-pressure coefficient (ratio of distance

:of e.p. from :leading:edge to chord length)

Angle of attack

Angle of downwash
Angle of attack, infinite aspect ratio

Angle of attack, induced

Angle of attack, absolute (measured from zero-

lift position)

Flight,path angle

Resultant force

. "_!!iN_.
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STRESS ANALYSIS OF BEAMS WITH SHEAR DEFORMATION OF THE FLANGES

By PAUL KUHlV

SUMMARY

The fundamental action of shear deformation of the

flanges is discussed on the basis of simplifying assumptions.

The theory is developed to the point oj giving analytical

solutions for simple cases of beams and of slcin-stringer

panels under axial load. Strain-gage tests on a tension

panel and on a beam corresponding to these simple cases

are described and the results are compared with analytical

results. For wing beams, an approximate method of

applying the theory is given. As an alternative, the

construction of a mechanical analyzer is advocated.

INTRODUCTION

The so-called "semimonocoque" type of construction,

which has been favored by aircraft designers for some

time, presents serious difficulties in stress analysis.
Static tests have proved that the bending action of such

_, stmlcture is not always described with sufficient

_,ccur,%cy by tile sta, nda, rd engineering formulas based

on the :_ssumption that plane cross sections remain

plane. It will be necessary, therefore, to devise new

working theories for the action of semimonocoque beams

under bending loads.

In order to arrive at reasonably rapid methods of

stress analysis, it is necessary to make rather sweeping

assumptions. It is obvio_s that the range of applica-

bility of any such method is limited. The present

paper concerns itself with beams typical in general

form of one class of beams used in airplane construction,
that is, with fairly shallow, wide beams, having flat covers,

symmetrical about the center line, ,with two shear webs and

with bulkheads that offer no appreciable resistance to

deformation out of tl_:eir planes.

Briefly, the action of such a betm_ under loads applied
at tire shea.r webs is as follows" The transverse shear is

t_tken up by the shear webs. The flanges attached to

these shear webs furnish part of the longitudinal stresses

required to balance the external bending moment.

The strains set up by these stresses induce shear stresses

in the skin which, in turn, cause longitudinal stresses in

the intermediate stringers attached to the skin until

sufficient longitudinal stresses exist at any section to

balance the external bending moment.

If the skin between stringers did not deform under
the action of the shear stresses, the standard beam

formulas would apply. The thin sheet, however, has

very little shear stiffness and suffers large deformations
under load. As a result, the first intermediate stringer
next to a shear web carries a smaller stress than the

flange of the shear web, the next intermediate stringer

carries less stress than the first one, and so on to the

center stringer, which carries the smallest stress. This

phenomenon of the interdependence between stringer

stresses and shear deformations forms the subject of

the present paper.
Apparently Dr. Younger was the first person in this

country to give serious attention to this subject. In

reference 1 he gives a formula for the efficiency of a box

beam with walls of uniform thickness, which may be

considered as the limiting case of very many extremely

small stringers. Nothing more on the subject was
published until two experimental studies appeared in

1936. Reference 2, dealing with the case of a skin-

stringer panel in edge compression, includes a theoretical

solution for a particular case. Reference 3 deals with

box beam in pure bending, a problem identical with the

one treated in reference 2. In both studies the stringer

stresses experimentally obtained were used to compute

efficiency factors for the shear stiffness of the sheet.

The most important practical problem is the inverse

of the problem dealt with in references 2 and 3; namely,

given the shear stiffness, to calculate the stringer

stresses. The problem is difficult and complex. In

order to arrive at any solution, it has been necessary to

use a very much simplified concept of the action of the

structure, as suggested in references 1 and 2. On- the

basis of this simplified concept, the analytical solutions

for a few very simple cases of axially loaded panels and
of beams are derived in this paper. For other cases,
it will be shown that a trial-and-error method of solution

is feasible°

The analytical solutions as well as the trial-and-error

method apply only to very elementary cases, namely,

to three-stringer panels under axial load and to beams

with _ single longitudinal stringer attached at tile
center line of the cover sheet. It has been considered

worth while to devote considerable space to the dis-

cussion of these elementary cases for the following
reasons:

1. The study of these simple cases greatly facilitates

the understanding of the fundamental principles. (It

is very strongly urged that anyone desiring to use the

1
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The condition of a pure diagonal-tension field is not

reached, however, until the buckling shear stress has
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been considerably ex-

ceeded. Consequently,
values intermediate be-

tween G and _/sG will

occur at stresses not

too greatly in excess of

the buckling stress (i. e.,
3 to 5 times), provided

that the edge members

are sufficiently stiff. If

the edge members are

not sufficiently stiff or
well braced to take the

transverse component of

the diagonal tension and

particularly if the sheet

carries edge compression
in addition to shear, the

shear stiffness may drop

to very low values.
Values as low as Ge=

0.1d have been reported

(reference 3) ; although

the numerical accuracy

of this particular analFIGURE 5.--Test panel.

ysis has been questioned, it serves at least as a useful indi-

cation of what may be expected, remembering that this

test was stopped long before

reaching the u]timate ]cad.._ e, ooo
Q u a n t i t a t i v e information o n

this subject is scarce. Fortu- Lt
nately, as will be shown later, %4,000
the shear stiffness need not be

very accurately known to obtain
%

r e a s o n a b [ e accuracy in the _.ooo
¢)

stringer stresses.
It is clear that the sheet will

not only act. as a shear member in o
accordance with the theory but

will also assist in carrying longi- Io,ooo
tudinal stresses. The following

assumptions have been used"

1. For a sheet carrying ten- 8ooosion in addition to shear, it was

assumed that the sheet is fully _;
effective in tension" i. e the _6ooo

sheet up to a line halfway-be- o.
tween the stringers is added to 4
the stringer proper when tom- _4.ooo'

puting the cross-sectmnal area
of the stringer This assump- "• &ooo
tion is obviously somewhat un-
safe and should be modified when

the stringer stresses are high. o
2. For a sheet carrying coin-

yon Kfirmfln's formula for effective width was used

in the form

2w=l.9_ft

where w is the effective width (on one side of the

stringer) and z the stress in the stringer. This formula
is probably always conservative in the range in

question.
COMPARISON BETWEEN TEST AND CALCULATED RESULTS

In order to check the validity of the method thus far

developed, a test specimen was built to represent a
structure corresponding to figure 1 (a). A sketch of the

actual test specimen is shown in figure 5. Pin-end steel

bars (not shown in the figure) spaced 3 inches apart

were used to separate the edge stringers from the cen-

tral stringer and to take up the transverse component

of the diagonal-tension field that developed under load.

In each bay between these bars, the strains in the

stringers were measured with 2-inch Tuckerman strain

gages on both sides of the specimen. This precaution

proved necessary because the stresses on the two sides
differed so much at some stations that readings on only

one side would have been almost useless.
The load was increased from zero to the maximum

of 4,800 pounds in five steps. With a very few minor
exceptions, the points for any one gage fell on straight
lines. For each station, the results obtained on the

front and the back of the specimen were averaged and

the average values are plotted in figure 6.

____o G/r-ess /n edge _/r/nger: (exper-/rzefT/O/) L__L

I I I _:__L--:+×-=-P-T-:Z F:/o.4 x/o

...... , co =5.4a (o-e/.. _+--o_top),

5 /0 /5 20 #5 20 35 40 45
E;/_fance from top, /n.

J_'IGURE6. -Comparisons between calculated and experimental results for tension test panel.

4,8o9 /a. 1
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2_/.i
/5 zo

o Exper-/menfo/ do/o, _dge st/ffenef- "_ 6a .... , c en fer- ,, _ E = I0 x I0
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....

O __12
111 --_z_ --

__ ..

_

; ....... ,T//_';'ZX "/z
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pression in addition to the shear, F,_UR_ 7.--Comparison bet, weeu caleu].ated and experimental results for compression test pave]° (!)ata from reference 2.)
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The calculations were made for the two different

assumptions of the shear stiffness indicated on the fig-

ure. The second assumption of Ge=ii/sG in the top part
was based on the experimentally observed fact that one

well-developed diagonal-tension fold showed in the top
of the panel on each side, in agreement with the cal-
culation showing that at the maximum load the shear

stress in this region was about six times the buckling
stress.

The second assumption gives perfect agreement be-
tween calculated and test results for the stress in the

central stringer. Tile agreement is not quite so good

on the edge stringer, the discrepancy occurring chiefly

at the root. Several explanations of the discrepancy

may be offered. An error of several percent may be
caused by an error in the value of E assumed to convert

strain readings to stress readings. The simple theory
used may break down to some extent near the root and,
finally, jig deflection may cause errors. The steel

triangle used on the lower end is not a rigid foundation,

and a slight elastic deformation of this steel triangle

under the edge stringers would relieve the edge stringers

of some load and throw it into the sheet and possibly
into the central stringer. A deformation of about

0.0003 inch would be sufficient to make the calculated

stringer stresses equal at the jig end. Undoubtedly the

assumptions of effective areas, effective shear stiffness,
and jig deflection colfld be varied within their possible

limits to give a much better agreement with tile experi-
mental points.

A similar analysis was made for the panel tested in
compression as described in reference 2. Tile results

are shown in figure 7. It will be noted that fair agree-
ment with the experimental points is obtained by assum-

ing that the effective shear stiffness is only 0.2 the shear

modulus, in marked contrast to the tension panel. The

c_rves ca]cu!ated with G_=G are also given to show
the extent to which possible variations in G_ affect the
stringer stresses.

BEAMS WITH ONE LONGITUDINAL

BEAN[ OF CONSTANT DEPTH

The simplest case of a beam subjected to shear defor-

mation of the flange is shown in figure 8. For simplicity
of the sketch the flange material on the side not under

consideration is assumed to be concentrated at the shear

web. This assumption does not influence the analysis
when the cover is fiat.

For convenience of discussion, the material concen-

tra/.ed at the top of the shear web will be referred to as

the "flange" throughout this paper, while the stringer
attached to the cover sheet will be referred to as the
"longitudinal."

It is again assumed that the longitudinal is cut along

the line of symmetry (fig. 8 (b)). The force acting on

this halved longitudinal is denoted by FL, the force on
the (tension) flange by Pg. The shear force in the web

(a)

FF+dFr
&

(b)

FIGURE 8.--Beam with fiat cover and one longitudinal°

is denoted by Sw; the shear force in the cover sheet,
by St.

The governing eq_lations are

dFr-- SwdZ--- dSc (3a)

--dFc=dSc

G_

(3b)

(3c)

with the auxiliary equations

a.
cry,-----_, _rL-- Sw= P; dSc-- rtdxAL

The solution of the resulting differentia] equation is
given in appendix B, Case 3 (a).

COMPARISON BETWEEN TEST AND CALCULATEDRESULTS

The test pane] that had been used in the previously

described tension test was slightly modified and

attached to two duralumin I-beams to form an open
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(a) Closed side.

.... ........................... _ ...................

(b) Open side°

FIGURE 9.--View of test beam, showing strain gages.
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FIGURE 10.--Set-up for testing beams°
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box beam. Figure 9 shows photographs of the beam
with the strain gages in place for a test run; figure 10
shows the test set-up. The cross section of this beam
is shown in figure 11.

It sho_ld be noted that the cover sheet and the longi-
tudinaI were not attached to the bulkheads except at
the root. The :flange material of the I-beams (includ-
ing the cover strips riveted to them and the sheet
material effective in tension) was replaced, for the pur-
pose of analysis, by equivalent concentrated flanges
with a centroida] distance of 2.80 inches (effective depth
£ of beam, fig. 8 (a)). Tile calculated stresses are
therefore valid for the flange eentroids. For compari-
son with the measured stresses, the calculated flange
stresses were corrected to the outside fiber stresses

x/_ duro/ s �rip [ O. 016 dura/ sheet

,2"-2.02 '/b. Ohonne/ ,''
duro/ I- beem bu//<hcod

Fmu_¢_: iI. Cross section on test beam.

under dm assumption that plane cross sections remain
plane f'or t]_e I-beams with covet strips.

Figure 12 shows the experimental points, the curves
calcul,_ted for three different assumptions of the shear
stiffness, and tile stresses calculated by the ordinary
be_ding theory. It can be seen that the experimenta.1
points group fairly well about the curve for G, -'_//s g,
particularly when this curve is corrected, for _n esti-
mated jig deflection by the formula in appendix B,
c'_se 2. Close to dm root, however, discrepancies are
again observed as in the case of the tension panel.
The high flange stress at the station nearest the root
may perhaps be explained by nonlinear stress distri-
bution in the I-beams caused by the method of _ttaching
them to the jig, which was not designed for this test.
The reduction in shear stiffness of the sheet as compared
witl_ the stiffness developed by the same sheet in the
tension panel can be ascribed to numerous initial
buckles present in the beam but not in the tension
panel.

Inspect, ion of figure 12 shows that very ]arge varia-
tions of shear stiffness have on]y a re]atively small
influence on the bending stresses. This resu]t is due
to the fact that, even when the shear stiffness increases
to infinity, the bending stresses never exceed a finite
limiting value. In many actual structures, the shear
stiffness provided is sufficiently large to permit the
limiting stress to be approached within a few percent.
Practically speaking, this fact means that the shear
stiffness need not be very accurately known to obtain
the necessary accuracy in the bending stresses.

BEAM OF VARIABLE DEPTH

In a beam with variable depth, the only change in the
equations is introduced by the fact that the vertical
components of the flange forces balance part of the
applied shear, so that the shear in the web now becomes

M (tan 5 + tan _/)S_--Sa---# (5)

where fl and v are the angles of inclination of the

tension flange and of the compression flange.
The analytical solution for a special case of a beam

with variable depth is given in appendix B as Case 3 (b).

4,000

3,600

2,8OO

.<-2,4o0
E>

L

Qe,ooo

_4

_. /,5oo
CO

4200

800

X
\

400

\

n<-. %

j/g deflect�on

I I I
x o ExpeFi/x:,enfol poMPs (E =I0.4 x I0 _) I
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" 6L-,=5D6'*

........ g_-/_G
..... Mc/Z

x

'_ _. Omiffed for" dF to cloHfy f/guFe;__

<_[ obfoin by infeG<:}o/of/o/7;corFec//bo for j,? clef�eel�on__

_ he( 'll'91"_)/e. ! !

\,

><,%,,

0 6 12 /8 £4 30
o/sfo,,._ce fr-omroot, in.
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FIGURE 12.--Comparison between calculated and experimental results for test beam°

CONSTANT-STRESS SOLUTION FOR BEAMS WITH ONE

LONGITUDINAL

The analytical solutions presented thus far, together
with the trial-and-error method, are reasonably ade-
quate for dealing with beams having one longitudinal.
There appears to be but slight possibility, however, of
extending these solutions to the practical eases of beams
with a number of ]ongitudina]s. An approximate
method will now be developed that can be extended to
such beams. The method will first be developed for a
beam with a single ]ongitudinal because comparisons can
be made with the exact solution to gain some idea of the
reliability of the approximate method.
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The approximate method is based on the following

reasoning. It is the aim of the designer to dimension
the structure so that the stress in it is uniform for the

given loading. For several reasons this ideal is never

reached, but there is usually an effort made to taper the
dimensions so as to approach the dimensions of the ideal

design. Now the solution for constant stress along the

span can be very easily obtained° It is possible, there-
fore, to consider the actual condition as a super-

position upon the ideal case, which can be calculated

exactly, of some additional disturbing cases or "faults."
These faults can be calculated only approximately, but

if they are of minor importance compared with the ideal

case, the resulting error of the total solution will be
small.

The detailed development of the method is as follows"

The fundamental equation

G_ _L)dx (6)d_= _-b(_--

can be integrated once, if z_ and _L are constant as

assumed, to give

(_- _) _[G_dx= (_-- _)xa__= E__- Eb (7)

where G_ is the shear stiffness averaged over the

distance x -- 0 to x -- x, and the z origin is taken at the

root. Integrated again to give the total shear force in

the cover sheet

For example, if g_ and t are constant along the span,

GetL 2
K1-- 2Eb

Equation (8) furnishes one relation between z_ and z_..
One more relation is needed to complete the solution.

There are infinitely many conditions fl'om which to
choose this relation. At any station along the span, the

internal bending moment should equal the external

bending moment. The root section has been chosen
because in a number of trials it always proved, by far, to

be the best choice. Equating the internal and external

moment (applied at the root) gives the relation

(_A_o + _A_o) ho= M_o (9)

Now remembering that

S_- _A_ 0

equations (8) and (9) can be solved for the bending

stresses

MoK_ (l o_)
_L-ho[A_oA_ o+ KI (A_ o+ At0)]

- M°(A_°+K') (_0b)
_rF ho[Al_oALo_t_ K1 (AF o@ AL0)]

Substituting equations (10a) and (10b) into equation

(7) gives

J

xaSI4o

_-- AF0 0c)

Equations (10a), (10b), and (10c) constitute the "pure
constant-stress solution" for a beam with a single

longitudinal.
The internal bending moment at any station along

the span can now be calculated

and, in general, this internal moment will not be equal

to the applied moment M_. This difference constitutes
the first fault of the constant-stress solution and will

be called the "moment fault."

In order to remove this fault, additional (corrective)

bending moments must be added, which are at any
station

M' -- AI_-- M,:,_,

the prime denoting corrective moments. The stresses

caused by these corrective moments must be computed
and added to the stresses of the pure constant-stress

solution°

The method of computing the stresses caused by the

corrective moments will be approximate and arbitrary
as thus far no exact solutions of this problem have been

found. The following method was chosen because the

underlying assumption is the most obvious one and

because the method is very convenient, eliminating the

necessity of computing the internal moments, the cor-

rective moments, and the corrective stresses separately.

From equations (10a) and (10b) it, follows that the
ratio

-_.0=(1 K_/ (I_,)

The assumption is now made that this ratio remains con-

stant (r--re) along tile span and that it holds not only
for the stresses caused by the "ideal" moments but also

for the stresses caused by the corrective moments.

Under this assumption, the direct stresses at any station

are given by

M_ (12a)

hA F i + ;:24-_

M_ (!

From these stresses the shear stresses are obtained by

using the fundamental relation (2) and integrating from
the root toward the tip

f0 z _,:r= _2b (_--- _L) dx (12e)

The moment fault has now been removed; that is, the

internal moments equal the applied moments when the

stress_!_s as given by equations (12a) and (12b) exist in
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Theincrementsofcorrectiveshearforceareobtained
by usingequations(13), (14), and (!5). After tile
integrationof (15)in fromthetip to obtainthecorrec-
tive shearforceSo', the correction to the flange stress

is calculated by the first expression of (16); the correc-

/

:: //5 _

FI(_t:t{E 17.- Notath)n used for b(;an_s wiih ()r|,hotrol)i(', cover plates,

tion to the shear stress is calculated by the last ex-

pression of (16).
The calculation of the correction to the stress _L is

somewhat more complicated because it varies along
the ct_ord. The total force on "ill ]ongitudinals, using

equation (17), is given by

F_-- _ dy-- sinh K_b (!9)
0 _ O-CL "

where zcL denotes the stress at tile center line of tile

beam obtained from equation (i7) by setting y--0.

In accordance with (16), only a part of ti_e corrective
i

shear force is applied so that the corrected total force

(m the ]ongitudinals is
I

i
Assume now that the corrected stresses in the ]ongi-

tudinais are distributed ehordwise according to the law

_o_--_rCLco_cosh _Ky

4-The unknown Y can be found from the equadoI_

ta,nh_b EC_o_:_

Yb AL_F_o,,_

whici_ is based on tile premise that

O'Lco_.r _ O'FcoYo #

for y=b. After U ires been found, the corrected stress
at the center line is found from

O-CLcorr _ OFcor r sech _ff_b

and equation (21) can then be used to calculate the

stresses at intermediate values of y. The rig'ht-hand

side of equation (22) is the ratio of the averag'e stress

in the ]ongitudinals to the stress in the flange. In

general, this ratio will be less than unity; however,

figure 16 shows that for a beam with a single longi-

tudinal the stress in the longitudinal may be larger

than the stress in the flange over a part of the span, and

similarly the right-hand side of equation (22) some-

times may exceed unity. In such a case, equations (21)

and (22) may be replaced by

(r_o_--_rCL_o_r(2--cosh }_y) (21a)

Yb' 
(2--cosh Yb) AL¢_'_o_

After Y has been found, the corrected stress at the
center line is found from

O'F corr

_C_o_-- (2 --cosh Yb)

and equation (21a) can then be use(| to calculate the

stresses at intermediate values of y.

The solution of equations (22) and (22a) can be

effected by inspection of tables. For practical pur-

poses it should be sufficient to usa the curve given on

figure 18.
As examples, beams A and B were analyzed under

t,i_e assumption that longitudinais with the total cross-

sectional area Ar are distributed uniformly along the

c}_ord. The results are shown in figures 19 and 20.
it will be seen that tile stress at the center fine of the

beam is very low. If all long'itudina]s are of tile same

cross section, they must be designed to tile stress in the

first longitudinal adjacent to the flange. Consequently,

-8--

-Yb-

-4-_

0

L.... j ]....... 71! --

\ t-I \ /
d-; ..... X +- ; '

I\ use sca/e I I I
\ o/ �el� I I I I 4

! \_ t i i I
.. L ,, j _ _ .......\ /...........o/,.-@h,' ]

-d!lt -<
.2 .4 ._ .8 /.0 /._

Ratio F_ ....
Az _ ....

F_;UaE 18.--Graph for auxiliary parameter Yb.

the longitudina]s near the center line are very in.

effectively used. In this connection, attention might
be called to the fact that the longitudinals need not be

of the same cross-sectional area along the chord° The
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assumptionof Ac being uniformly distributed may be

fulfilled, for instance, by using longitudinals of large

cross-sectional area but widely spaced near the flange
and longitudinals of small eross-seetionai area but

closely spaced near the center line. Altlmugh such an

arrangement would not increase the over-all structural

efficiency, it might under certain conditions offer

manufacturing advantages.

MECHANICAL ANALYZER

The constant-stress solution is always approximate.

When the moment and she_r corrections are ]_rge,
doubts may arise as to whether the solution is suffi-

ciently accurate. It might be gdvantageous to con-

struet a mechanical analyzer to deal with such cases.

One possibility for such an analyzer would be actually
to build units representing the mechanical model

sketched in figure t (b). The springs might be canti-

lever springs, so that their stiffnesses could be varied by
changing their lengths. Each unit would represent

one bay of the trial-and-error method of solution and

would have one spring to represent the stringer stiffness

and one spring to represent the shea.r stiffness of the
sheet attached to one side of the stiffener.

The chief difficulty in the design of such an analyzer

would probably be in reducing the friction between the

units and the guides necessary to aline them. A fMr!y

Igrge number of units would be necessary to represent

wing cover, which would mean ,_ fairly expensive

instrument. This disadvantage is counterb._lanced by

o_ T

40,ooo ...... 8,ooo

/o,ooo

..... _.....

i

]

/?oo t 6

2,000

FIGURE 19.--Stresses in beam A with AL uniformly distributed along chord.

the possibility that the instrument would offer in a

comparatively short time quite an exact analysis,

including the effects of bulkheads and of yielding

supports. The main errors in this solution would be

those caused by the finite length of bays.

CONCLUSION

The art of stress-analyzing shell structures is of recent

origin, and any methods of analysis proposed must go

through a process of trial and development.

Development of the method of shear-deformation

analysis is desirable in several directions; e. g., exact

6"0,ooo

I

r !/

FI(_URE 20.--Stresses in beam B with AL uniformly distributed along chord.

solutions should be found to replace the constant-stress
solution and methods should be devised to calculate

the infl_lenee of bulkheads.

Rough. approximate caleuiations on bulkhead effect

can be made by assuming that all the ]ongitudinais
are relocated ,_t the center line of the beam. For

beams with a single longitudinal, the effect of bulk-

treads can be calculated. A series of systematic eom-

p_risons between the extended solution of Younger _nd

Case 3 (a) of appen(iix I{ indicates that t'()r :_, eerta.in
rnn_'e tl_e single-l(mgit,ldina.] a ssll_nl)tion _ay yie](i

witt_ suitable <'<)_'_'e('_,i(_n t'a,(;t,()rs. 'l't_e (;()_t)n_'is(_s

m'e :_()t (,'ivei_ t_()weve_', t)e,(_,ause they migl_t })e _is-

ien.ding in view ()f' tt_e sl_ear fa,_lt of Y()(_nger's s()l(_ti()_.

Calculations m_de thus far indiea, te tl_a,t in pr_cti('_al

cases the effect of the bulkheads is very small.

It should be emphasized that analyzing shell struc-
tures is an _rt rather than _ science. The arithmetic

of analyzing highly redundant structures can be re-

duced to manageable proportions only by making

assumptions that will be valid only within a certain

range. 'Fhis fact. leads to the unfortunate, but inevi-
table, conclusion that the analysis of such structures

cannot be made entirely by handbook and formula but

must be guided by engineering judgment.

LANGLEY MEMORIAL _ERONAUTICAL _ABORATORY_

NATIONAL ADVISORY C)OMMITTEE FOR AERONAITTICS_

]_ANGLEY FIELD, VA., June 3, 1037.



LIST OF SYMBOLS

A, cross-sectional area (sq. in.).

E, Young's modulus (lb. per Sqo in.).

F, internal force (lb.).

G, shear modulus (1t). per sq. in.).

K, constant.

L, length of panel or beam (in.).

M, bending moment (in.-lb.).

P, external load (lb.).

S, shear force (lb.).

b, spacing of stringers (in.).

b, half width of beam (in.).

c, camber of cover (in.).

h, depth of beam (in.).

t, thickness of cover sheet (in.).

u, displacement of point (in.). (See fig. 4.)

w, running load (lb. per in.).

_/, shear strain.

_, direct (normal) stress (lb. per sq. i_.).

7, shear stress (lb. per sq. in.)°

(See figs. 3 and 4.)

(See fig. 8.)
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APPENDIX A

Subscripts h_vc the following significance:

A, loaded stringer A shown in figures 1, 2, 21, and 22.

B, unloaded stringer B sl_own in figures 1, 2, 21, and 22.

('0 cover sheet.

F, flange of beam.

L, !ongitudinal of beam.

IV, shear web.

a, applied stlears and bending nmmcnts.

e, effective.

0, root section.

c, compression.

t, tension.

int, internal.

corr, corrected.

S, static equilibrium.

E, elastic equilibrium.

CL, center line.



APPENDIX B

SOLUTIONS OF DIFFERENTIAL EQUATIONS FOR SYMMETRICAL STRUCTURES OF CONSTANT
CROSS SECTION

SIGN CONVENTIONS

Forces and stresses in stringers are positive whe_

tensile. Shear forces and stresses in the stleet are posi-
tive when caused by positive stresses and strains in the

loaded stringer A in the case of axially loaded panels
or in the flange F in the case of beams.

CASE 1--THREE-STRINGER PANEL ON RIGID FOUNDATION WITH

AXIAL LOAD

The two possible cases shown in figures 21(a) and

21(b) can be mathematically treated by taking one-

half the panel, as shown in figure 21(c), which also

///// _ "___"
1 I

I
i !

I
!

_ / ./..,, ./ ,..:/
_--_:;:_:;: ......

L

I
-- b --i

P

(c)

I

(b)
FIGURE 21 .--Axially loaded panels.

gives the notation to be used. The derivation of the

fundamental equations is given in the main body of

this paper. Slightly modified for the purpose of deriv-

ing tile basic differential equation, these equations are

,__ rt _ rt

r'- Eb

where the primes denote differentiation with respect to x.

Differentiating equation (B-2) again and substituting

into the result from equation (B-l),

The boundary conditions are

at x--0, r----0 /

= and _B--0

The result is

P G_ sinh Kx
7 A_ EbKcosh KL

P , I.
04: .... ..... 0 B

A,, A ,_

whore

= Eb\ _4_+ (B-(i)

In reference 2 tl_e formula

2P[-cosh px--tanh pL sinh px_+_ 1]
( ----"b--24_,L 4 j

25 a_t
where p2: 2 A_,hE

is given for the special case where the area of the edge
stiffener is twice the area of the central stiffener. Tak-

ing account of the differences in notation and coordinate

systems used, this result agrees with the gener_i formula

given under (B-5).

It should be noted that the final formulas (B-5) be-

come invalid when either t or g_ approaches zero be-

cause in these cases the equation (B-3) becomes invalid.

The solution for such cases is obtained by using the

fundamental equations (B-l) and (B-2) directly.

An analogous procedure must be used for Cases 2
and 3.

CASE 2--TtIREE-STRINGER PANEL STRAINED BY MOTION OF

SUPPORTS

The differential equation for the case of figure 22 is

(a) (b) (c)
FIGURE 22.--Panels strained by motion of supports.

the same as for Case 1. The boundary conditions are
now-"

at x--0 , <4--0 and _,--0

at

The result !is

cosh Kx

r-- r0cosh KL

t sinh Kx

_ -- -- r°KAA cosh KL

t sin}_..IG:

O-B - Tt)"=>--ct_/l ......B (_'(_sh ...... K!"Ia ....

wh,,re A" t_:_.st.tl_: s_t._n(; l_(;,.r_iflg _t.s i_. (B---(5)..

.a

(B-S)
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CASE 3--CANTILEVER BEAM WITH ONE STRINGER

(a) Uniform depth, concentrated load at tip.

(b) Depth decreasing lineally to zero, uniformly dis-
tributed load.

Figure 8 shows the notation used for both cases.

(Note that the x origin is at the tip.) The flmda-

mental equations are for Case 3 (a)

P

_L'AL-- rt

--Tt

(B-9)

G_

which gives the differential equation

,, get/ 1 1 ) PG_ --0 (B-10)

q'he boundary conditions are

a,t x=(), a_.=0, and at----()

at x=L, r=0

The result is

cosh Kit

cosh

th i +AS

P ( sinhK.r ) (B-12)(_L--h(Ac-_ AF) Z--K cosh KL

wl_ere IT has again the same nleaning as in (B-{i) with

A_,, and/IL substituted for A_ and A_.

In Case 3 (b), wL/2 is substituted for P; h in this

case is the (lepth at the root.

FmU_F 23. Cantilever beam with concentrated load not at tip.

The case of a beam loaded by a concentrated load

not at the tip is a simple problem in indeterminate

structures. The beam is cut just outboard of the load

(tig. 23) and. the stresses in the cantilever part are caI-

('l flared (Case 3 (a,)). From these stressss, the distortiol_

()f the beam se(',tion 8t tile c!_.t,; i. e., the relative dis-

placement of the tips of the flange F and the longi-

tudinal L, can be calculated. A system of forces X

is then applied to equalize the distortion of the can-

tilever tip and of the inboard end of the "overhang,"

utilizing the formulas of Case 2.

CASE 4--CANTILEVER BEAM WITH ORTHOTROPIC COVER PLATE

gounger's solution for a beam of constant section.-

The beam and the coordinate system used ,%re shown in

figure 17. If should be noted that the x direction, is

opposite to that used in Cases 3 and 4.

Under the _ssumptions that the transverse stresses

and strains are negligible (Poisson's ratio equal to zero),

and that g_ is independent of E, the differenti'fi equa-

tion of the cover is

b2u E 5%

where u is the displacement of a.ny point on the cover in

the z direction.

The boundary conditions are

bu

at, x--0, u--0 and _T-0
-.j

bu

z=L, b_=0 (B-14 )

bu

y--0, by=0

This equation was established by Younger (reference

_md obt_fined for the iongitu(lina.i stress in the cover

Try _r,r ]
:l:i,, cosh 2/_L cos 2L i

21_ A_, cosh2KLd b -_ ...... 2KL
|

and for the shear stress _I(B-i6)
|_r?j 7rx

M0g sinh 2KL sin 2L ]

....................._--- hE 2KAy, cosh 2_ _- sinh _]K-L .

where K is defined by

E 7)

Extension of Younger's solution.--Younger's solution

can be somewhat extended. The external bending

moment can be represented by a superposition of

several terms:

_x 3 ;rx 5 _r.r

214---- _111 cos 2_ + _'_f_ cos _ + M_cos 2L

'_B, Tr.1;

4- . . --4M,,, ('_{_s-2L (B ....is)

whBr{'-, t,[le m's :!,r{!; (}(]([ iil{,ege, rs.

4, pp. 36-47). For the solution lie assumed that the

external bending _o_nent (on the whole be'm_) is

given by

_rx (B-15)M--/ff0 cos 2L
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The va,lues M_ . . 2_I_ are chosen so that the sum of

the terms equals the given externa, l bending moment at

'm points other than the tip, where it is assumed that

M=0. In order to make comparisons with Case 3, the

bending moment caused by ,_ tip load was expressed by

rex 3 rexM=PL 0.821 cos _L@0.i()l cos 2L

5rex 7_!_
@0.045 cos _L-L@0.033 cos 2L/ (I3-19)

The stresses corresponding to the ruth term _re given

by

1_'tre?/ I_'Irr.r
:t/._cos h _K-L cos-2Z-

_"-----( ..... mTrb ,At. 2KLsinh mreb)2t_ A_, cosh 5-/(--L4 b rare 2-RL, (B-
mrex 1Ba)"tared

2W_ G_ sinh 2KL sin 2L

( mrrb AL4K2L ra-;b_r,,= h E_2KAFcosh_+ bmre sinh2KL/

The assmnptions of Poisson's ratio being zero and g

being independent of E are, strictly speaking, incom-

patible. The physical picture conforming to these
,sssumptions. is not a, plate buC _ system of stringers_ ,

carrying only longitudinM stresses tied together by a
sheet carrying only shear stresses. This picture is

reMized very nearly in pra.c_ice by a skin-stringer cover,

the only difference being tha, t _im total cross-sectio_ml

area of the stringers is not necessarily equal to the area

of tim sheet, _s in the case of the plMn cover sheet. All

the equations written for the plain cover sheet apply,

therefore, to the skin-stringer cover if only (B--17) is

replaced by

-rig
IC-- E (B-17.)

where R is the ratio of sheet are_ to are_ of longi-
tudinals.

Constant-stress solution.--The coordinate system is

that shown in figure 17. Under the assumption that

_--constant for each longitudinal, the fundamental
relation

dr _A(r
dz - t_'_xy (B-20)

can be integrated once to give

Act (z :r.A_ -=

i

where g, is tl_e shear stifr_ess a,v era, ged. over the (lis_a._w,e

x--0 to x--x. Integrating _g_fin

;'..,,,=yo -.Jo .

In any given case this integration can be performed
a,nd the result is

whor0

NOW

(see fig. 24) or

AO

Sc--/Q,_ (B-2 2)

tO,= l,, _,Gtd,.

dSt. AL

r'..

>rmrr
'1 Y x
I,
I,
iI
II &
II

II

iI
II

I'

I,
II ....

Fw<run 24.--Free-body diagram of cover plate.

(B-2:_)

Differentiating (B-22) and equa, ting to (B-23)

]2o- A L

assuming theft_ is independent of y.
The bo_a_d_ry conditions are

de
(1) at y--0, r--0 for any x. Therefore d_--0

(,21) at. a.n.y desired reference station R, the i_ter_ml
_nome, nt equals the externa, i _noment 5G.

The solution is

iIG c_::,shK_y
O ...........................

)h_(A_., cost_ Nab+ _ sinh K_,_b

r--_z_ax tanh K_y

(B-25)

(B-20)

where ./(3 is defined by

AL AL

. L_

it :_nay be noted that if G,_ a_d. t are not varied along

the span, the const,_nt Ka is identical witl_ the con'e-

spending constant of _Younger's solution except for_

10 percent difference in the mm_erica.1 factor, namely,

_,,"2 against _r/2.



APPENDIX C

ANALYSIS OF BEAM B

The dimensions and the loading of the beam are
shown in table 1I.

ORDINARY BENDING THEORY

M 2,800,00O

o-_.-- o-L=O--h(A_+A_) -24(1.875q_ 1.875)-

31,100 lb. per sq. in.

CONSTANT-STRESS SOLUTION

Since Ue is assumed constant along the span, Gx--Ge

_nd, from equatio_ (7),

Eb

From equation (8)

GJo _L)dx__. (aF__ aL) _E_ £Lx( a X

X 1-- dx
54- d,, 596

Kt=4.35

From equation (].0a)

2,soo,ooo×4.35
°_-24[ 1.875 × 1.875 + 4.35 (1.875 -/i. 87_)i

--25,550 lb. per sq. in.

From equation (:t0b)

2,s00,000 (_ .s75 + 4.35)
_F--2411:875)_ 1.875+4.35(1.8754-1.875)]

--36,500 lb. per sq. in.

18

Substituting in equation (7) for the she_r stress _t

tl_e tip

280)<0.2
r.,,x--(36,500--25,550) 24 =25,560 lb. per sq. in.

The calculation of the shear correction is shown i_

_able 1II.
TRIAL-AND-ERROR SOt_TION

T_ke Ax=40 in.

SwAX wzLAx WLAx__ 71.4 }_ 280 i:.40
h -- 2box --2ao 2)<24 ==16,670 lb.

AFF--16,670--ASc

GeAz 0.2 )< 40

A typical cycle of the c_!culation is shown in table IV.
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TABLEI.--ANALYSISOFTENSIONPANELWITHSHEARDEFORMATION

L=36
AA=0. 403 Ax= 6 FB=EASc

./1 u=0. 220 F.4 =2, 400--EASe F_ Fu
t=0. 016 FA FA °'B--AB--O. 220

b=4.60 o-A =[_A --0. 403 Ge/E=O. 4

_eA:C.

Ar = L_(O-A --o-u) = 0. :%!2 (a.,1 --o- n)

T:=XAr

ASc-_rtAz=O. 096 r

Station

0 .................

.... _5-
1.........................

210

2 .................

.... ii5-
3....................... _6-

4...................... 5_-

5 ....................... __

6 .................

By trial-and-error method By formula

:._Sc FA O A F B O-B OA --O'B AT 7" ASC O'A O-B 7"

(lb.) (lb.) (lb./sq. in.) (lb.) (lb./sq. in.) (lb./sq. in.) (lb./sq. in.) (lb./sq. in.) (lb.) (lb./sq. in.) (lb./sq. in.) (lb./sq. in.)

---- 5, 960 0 .....................
2, 400 0 ! 5, 960 0 5, 230

1 708 - - 3 315 ......... 1-730- ' _...... E 5 022 - 1 717-J ....... 2-885--
--5;65_......... _656 ..... _ ................ '--------:--:-----.......... ---_............ _-s_'_..... _- - ..........................

1,814 ........ 4,560 ..... 586 .......... 2,'- 662.............. 1,'- 838.... I .......... '---'--960 ............................. 2; _-57- I-- 214 ......... 4,'- 502............. 2,'- 670.... ]l......... 1," 584.....
.............. /.............. , ............. 1,1971 115 ............................

--i;70'2 ......... ,t,25i- ] .... 698- 3,170 1,054 550- _ .......... i7 ...... 62- 4, 220 3,186 ........... i56--

--i._5 ........ _;6_5..... _ ......... _-:fi4........... 6_i........... ._56- 6 ........ _-6%......... :_-_i .......... :fi'2-

........ _;_f_........... _56........... '_5i _..................... I 3,996 3, ,595 187--i;;i_ .......... _;66g..... _g_- ' t I .......... _is ...... _6- _........ '_............. '_..................

"-i;664 ......... 3;980- .... 7(96 ............... 3, 618 [.............. 362 / .............. 189 ...................... 94 91 .............. 3,968 I .............................3,630 . 0

Appendix B, Case 1.

Ta _LlC l I l .--

TAI_LE II.--CHARACTERISTICS OF BEAMS
The beams are assumed to be half beams as shown in fig. 8 (a).

All beams:

h=24 in. at root.

h=0 at tip.

G_/E=0.2.

:[F=AL

(sq. in.)

[ Root Tip

1.875 I 1.875

1. 875 I 0

C'_ ........ ] 1. 880 . 470
i

I............... t ....... :

t

(in.)

P

Root , Tip
0.040 0.040

.040 .000

040 010

b=24 in.

L=280 in.

IV=HA lb./in.

CAI_CI;I,ATI()N ()F SHEAR-FAIS]71' CORRECTI()N FOR BEAM 13

_%'(,p

AZ=40 aF' = 0.5_-4 _' a, = 25,550q-o-L'
l@=a_'Al*'=36,500Ar 7=25,500)[ , , "_"7 _ASc'

& Sc_ = S w - _/xF .::_Sc' = A Scs-- A Sc _ 7-_ o_ = 7-+ r'

% .... = 30,500+_r'

I

Station from Ay=AL
root (sq. in.)

(in.)

o........... 566-

........... 556-

2.......... i_6-

3.......... i_6-

..........

--56-

Ax " !ASc8 (lb./sq.7" I .... _ ........ ' ' (lb./.q.¢F' I( ¢C'./sq. ¢F¢o_, o-L_o_.. 7"' I 7"_
h t Sw (lb./sq. (lb./s(l. (lb./sq. (lb.lsq.(in.) (in.) -h-- ([bS) AF AScu ASc Sc R ib

. . (lb.) (lb.) in.) tin.) UP.) UP.) in.) in.) in.) in.) in.) in.)

................... .................... I ____141

._68 ....... I................. },soo .... :_ ...... : .... 1---2.... --4(i_6 .... ff_56----7(756-1 44,220 I 17,840 I .........

.................. --30

.402 5.141 .00857 16,660 -6(806--6[g66- 20 080 6 880 --20 .......................... 40,310 21,720 .......... ii[556

._36 ....... i................. -ii;666- ----: .... l---[ ............. 4,120 3,840 -3,840

.669 5.861 .0143 16,660 -9(866--65965- 16 4401 9 400 --2 540 ................................... I......... / --2,220.804 ....... i ................. -5i7i66- ____[ ....... [ .... ]___[ .... 1 580 980 --980 37,480 24,580/ .........

.937 12.001 .o20o 1_,_0 -6(_66-_-_(g_6- 12,780 1¢_,22o-a,3o0 ___i................................... /......... -2,1o0 1-i67686
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TABLE IV.--TRIAL-AND-ERROR SOLITTION FOR BEAM B

Station

0 .......

1 .........

2 ........

3 ........

4 ........

6 ........

7 ....

x from AF_AL

root(in.) (sq. in.)

280 0

260 .............

240 .268

220

200 -- .... [536--

180

140 __2o .... i-6_5--

100 __so ---i/_6--
oo
40 ..... i_66_--

2_ ..... i:_--

tax

67iii5-

i7658---

ASc

(lb.)

t i
o o ............. o ! o o ............

...... 31736-- ........................ 12,940 .... i5(9,i6 ...... 4812,80 ...... 34-7360 ...... ii/,153--3, 730 13, 920 ............
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(lb.) (lb./sq. in.) (lb.) (]b.) (]b.,/sq. in.) (lb.]sq. in.) (lb./sq. in.) (Sb./sq. in.) (lb.)

t





\

Diameter

p, Geometric pitch
p/D, Pitch ratio
V', . Inflow velocity

T,

Slipstream velocity
T

Thrust, absolute coemcient Cr_pn_-D4

Torque, absolute coefficient Ce= Q
pn2D 5

!1 hp.=76.04 kg,m/s=550 ft-Ib.tsee.
1 metric horsepower=l.0132 hp.
1 m,p.h.=0.4.470 m,p.s.

1 m.p.s. =2.23-69 m.p.h.

3

Ca,

r/,

Power, absolute coefficient Cp=--

Speed-power coefficient= 5/_

EtIieieney
Revolutions per second, r.p.s.

Effective helix

5. NUMERICAL RELATIONS

1 1b.--0.4536 kg.
1 kg=2.2046 lb.
1 mi,=1,609.35 m=5,280 ft.
1 m--3,2808 ft.


